Search results for "Exact sequence"
showing 9 items of 9 documents
L 2-topological invariants of 3-manifolds
1995
We give results on theL2-Betti numbers and Novikov-Shubin invariants of compact manifolds, especially 3-manifolds. We first study the Betti numbers and Novikov-Shubin invariants of a chain complex of Hilbert modules over a finite von Neumann algebra. We establish inequalities among the Novikov-Shubin invariants of the terms in a short exact sequence of chain complexes. Our algebraic results, along with some analytic results on geometric 3-manifolds, are used to compute theL2-Betti numbers of compact 3-manifolds which satisfy a weak form of the geometrization conjecture, and to compute or estimate their Novikov-Shubin invariants.
A Push Forward Construction and the Comprehensive Factorization for Internal Crossed Modules
2014
In a semi-abelian category, we give a categorical construction of the push forward of an internal pre-crossed module, generalizing the pushout of a short exact sequence in abelian categories. The main properties of the push forward are discussed. A simplified version is given for action accessible categories, providing examples in the categories of rings and Lie algebras. We show that push forwards can be used to obtain the crossed module version of the comprehensive factorization for internal groupoids.
Isotopy classes of diffeomorphisms of (k-1)-connected almost-parallelizable 2k-manifolds
1979
On Fibrations Between Internal Groupoids and Their Normalizations
2018
We characterize fibrations and $$*$$ -fibrations in the 2-category of internal groupoids in terms of the comparison functor from certain pullbacks to the corresponding strong homotopy pullbacks. As an application, we deduce the internal version of the Brown exact sequence for $$*$$ -fibrations from the internal version of the Gabriel–Zisman exact sequence. We also analyse fibrations and $$*$$ -fibrations in the category of arrows and study when the normalization functor preserves and reflects them. This analysis allows us to give a characterization of protomodular categories using strong homotopy kernels and a generalization of the Snake Lemma.
FREDHOLM THEORY FOR DEGENERATE PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS WITH FIBERED BOUNDARIES
2001
We consider the calculus Ψ*,* de(X, deΩ½) of double-edge pseudodifferential operators naturally associated to a compact manifold X whose boundary is the total space of a fibration. This fits into the setting of boundary fibration structures, and we discuss the corresponding geometric objects. We construct a scale of weighted double-edge Sobolev spaces on which double-edge pseudodifferential operators act as bounded operators, characterize the Fredholm elements in Ψ*,* de(X) by means of the invertibility of an appropriate symbol map, and describe a K-theoretical formula for the Fredholm index extending the Atiyah–Singer formula for closed manifolds. The algebra of operators of order (0, 0) i…
The snail lemma for internal groupoids
2019
Abstract We establish a generalized form both of the Gabriel-Zisman exact sequence associated with a pointed functor between pointed groupoids, and of the Brown exact sequence associated with a fibration of pointed groupoids. Our generalization consists in replacing pointed groupoids with groupoids internal to a pointed regular category with reflexive coequalizers.
Bipullbacks of fractions and the snail lemma
2017
Abstract We establish conditions giving the existence of bipullbacks in bicategories of fractions. We apply our results to construct a π 0 - π 1 exact sequence associated with a fractor between groupoids internal to a pointed exact category.
The ziqqurath of exact sequences of n-groupoids
2011
In this work we study exactness in the sesqui-category of n-groupoids. Using homotopy pullbacks, we construct a six term sequence of (n-1)-groupoids from an n-functor between pointed n-groupoids. We show that the sequence is exact in a suitable sense, which generalizes the usual notions of exactness for groups and categorical groups. Moreover, iterating the process, we get a ziqqurath of exact sequences of increasing length and decreasing dimension. For n = 1 we recover a classical result due to R. Brown and, for n = 2 its generalizations due to Hardie, Kamps and Kieboom and to Duskin, Kieboom and Vitale.
Topological classification of 4-dimensional complete intersections
1996
Let X,,(d) C C P "+r denote a complete intersection, the transversal intersection of r hypersurfaces in C P ~+r defined by r homogeneous polynomials of degrees (d l , . . . ,dr) =: d, with dld2...d,. =: d the total degree. It is well-known that the diffeomorphism type of X,,(d) is determined by n and d. In [7] and [8], Libgober and Wood showed that in dimension n -~ 2, there exist k distinct multidegrees ibr any integer k 6 N such that the corresponding complete intersections are all diffeomorphic. For n = 1,3, the diffeomorphism classification of Xn(d) is well-known by surface theory and the classification of 1-connected six-manifolds [12] respectively. For 7z = 2, at least the topological…